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Consequences of major accidents: Assessing the
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Abstract

Quantitative risk assessment studies of accident scenarios usually involve estimating the number of fatalities that can be expected. The number
of people injured, however, is seldom evaluated because it implies significant additional effort and often the information required to perform this
evaluation is not available. However, the number of injured people can be very important for emergency planning, especially in relatively large
accidents. In this paper, a set of 975 accidents were selected for analysis, with the aim of searching for a relationship between the number of people
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illed and the number of people injured. As the data were scattered, principal component analysis and clustering analysis were applied to identify
he data subsets that could undergo a selective, specific statistical treatment. Further treatment of these subsets led to mathematical expressions
hat are used to estimate the probable number of injured people as a function of the number of fatalities for all accidents, as well as for gas cloud,
re and explosion events, respectively.
2005 Elsevier B.V. All rights reserved.
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. Introduction

In quantitative risk assessment (QRA) of accident scenarios
nvolving hazardous materials, rough hypotheses are often used
o evaluate the magnitude of the consequences. These hypothe-
es are sometimes essential in order to draw iso-risk curves, as
hey complement the physical effect and vulnerability calcula-
ions. For instance, if more precise data are not available, it is
idely accepted [1] that

the indoor mortality rate in the case of toxic exposure is 10%
of the corresponding outdoor rate;
for blasts (vapour cloud explosions), the fraction of people that
die outdoors and indoors is 100% if �P > 0.3 bar. If 0.3 bar
>�P > 0.1 bar, nobody dies outdoors and 2.5% die indoors;
about 10% of the houses outside the cloud and inside the
�P = 0.1 bar contour are severely damaged and about one in
eight people in a severely damaged house is killed.

∗ Corresponding author. Tel.: +34 93 401 67 04; fax: +34 93 401 19 32.
E-mail address: joaquim.casal@upc.edu (J. Casal).

These hypotheses, which are mostly rules of thumb based on
experience, do not necessarily agree with real data from actual
cases, although they are normally of the same order of magni-
tude. Moreover, they save a lot of effort and reduce the time
needed to carry out QRA.

Risk analysts, especially when major accident scenarios are
concerned, seek to estimate/predict the overall number of people
affected, i.e. fatalities, injuries and possibly evacuees. Standard
QRA focuses mainly on calculating the number of fatal victims,
as well as calculating the distances that define the areas to be
evacuated. The number of injured people is seldom evaluated, as
it would involve significant additional effort and in most cases
little or no information is available.

These estimations are all based on calculating the effects of
an accident, and they are independent from each other. Each
estimation refers to a specific vulnerability criterion, and may
include some of the shortcuts mentioned above. So far, no sta-
tistical relationship has been proposed to link the number of
fatalities (NK) in an accident involving hazardous materials to
the number of injured people (NI). Nevertheless, such a relation-
ship could be especially useful in certain cases. For example, if
1 http://certec.upc.es/. NK is calculated for the area surrounding a plant where a major
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Nomenclature

n number of records
NI number of injured people
NK number of killed people
R correlation coefficient
�P explosion overpressure (bar)

Greek letters
σ standard deviation

accident may hypothetically happen, a shortcut for estimating
the expected number of injured people would be useful for emer-
gency planning purposes. An injured person, by definition, is
someone who needs to be hospitalised quickly. From the point
of view of emergency management, estimating the number of
injured people quickly in the case of HazMat accidents is there-
fore of vital importance.

In this paper, we study the possible existence of a relationship
between NK and NI. A general equation is proposed, as well as
specific equations for three accident scenarios (fires, gas clouds
and explosions). While all these equations can be considered to
be predictive, it is important to point out that they are probabilis-
tic. In fact, as shown in the following sections, data variance is so
high that it would be quite arbitrary to search for a deterministic
relationship based on best fitting.

2. The data sample

We used a sample of 975 accident records to carry out the
study. Data were taken from the February 2005 release of the
Major Hazard Incident Data Service (MHIDAS). This database,
which is maintained by the UK Health and Safety Executive, is
one of the most frequently used databases for historical analy-
sis of incidents involving dangerous substances [2]. It contains
data on accidents that have occurred in 95 countries since the
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There are also other data bases on industrial accidents, which
were not used in this study. They could be used in the future to
enlarge somewhat the sample and confirm or improve the results.

Like almost every accident database, MHIDAS is somewhat
selective in recording information. The more information that
is available (to the data compilers), the more likely it is that the
accident will appear in the database. For this reason, accidents
in distant or developing countries are underrepresented, as well
as accidents that happened decades ago (in this case accidents
are only recorded if they were very severe).

Some measures were taken to reduce data bias. First, acci-
dents that occurred before 1975 were excluded, since they hap-
pened in a technological setting that is very different from the
present one. Safety measures, risk planning and urban plan-
ning before 1975 cannot be compared with the current situation.
In addition, the following sets of accidents were excluded: (a)
accidents due to handling and/or manufacturing of conventional
explosives (TNT, dynamite, gunpowder, ammunition), as these
materials are specifically designed to damage structures and
harm people and so have a very high potential for causing severe
accidents, (b) accidents due to sabotage, for the same reason and
(c) the few accidents with more than 2000 fatalities, because
of their exceptional and atypical nature (in fact, there is only
one such event after 1974, that is, the 1984 Bhopal gas leak
accident).

Two more restrictions were imposed on the data: (1) accidents
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eginning of the 20 century. The data fields are codified in such
way as to make searching for data subsets quite easy. Although

he version used includes 12,674 records, some information is
nknown and some fields are empty. When an accident involves
ore than one dangerous substance, it is recorded more than

nce in the database, which is a problem when selecting data. In
rder to fix this problem and to use the data to their full poten-
ial, a new database was developed in Microsoft Access. This
as programmed to import the incident data from the original
atabase and to store them in a relational structure. The codifi-
ation remained the same, but queries were now possible. These
ueries allowed the incidents to be grouped and filtered using
ither the MHIDAS code fields or user-designed code fields. For
xample, it is possible to classify the database’s location code
eld according to the continent and to filter the incident using

his new criterion. Moreover, new records or more reliable infor-
ation can be introduced into the Microsoft Access database,
hich improves the incident data.
or which NK = 0 or NK is not defined were excluded and (2)
ccidents for which NI is not defined were also excluded. These
estrictions were introduced to limit the scope of the work to
hose data needed to derive some correlation between NI and

K, and also to avoid the bias caused by considering accidents
ith an undefined killed/injured record as events that are not

atal or not harmful.
The sample of 975 accidents was therefore defined as

escribed above. It should be noted that the information used
as not always accurate and that discrepancies were detected
hen the consequences of certain accidents were compared

o other bibliographic sources. This inaccuracy is sometimes
ound, for example, in the number of injured people, when
gures such as 201 are used to imply “more than 200”. Nev-
rtheless, using a large dataset balances the effect of the biased
ata.

In Fig. 1, the number of injured people is plotted against the
umber of fatalities. As both NI and NK are discrete variables,
any points on the graph overlap (e.g. the pair NK = 1, NI = 1

ecurs 61 times). To give a better idea of the data distribution,
he thickness of the data points in the chart is proportional to the
umber of times they are repeated in the sample, as indicated in
he legend. It can be seen that there is significant data scattering.
or example, for NK = 1 the number of injured people ranges
rom 0 to 600, and for NI = 100, NK ranges from 1 to 60. This is
hy a log–log scale was used.
A general, overall trend is quite clear, i.e. NI increases with

K. However, it is obvious that a basic statistical treatment aimed
t a simple regression (e.g. based on least squares) of this cloud
f points would be useless and completely unreliable. Therefore,
more complex treatment was applied using two multivariate
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Fig. 1. Data sample. n is the number of records for a given pair (NK, NI).

analysis techniques: principal component analysis and
clustering.

3. Principal component analysis

Multivariate analysis is essentially aimed at finding subsets
in a sample that correlate better than the sample as a whole, i.e.
they have a smaller variance. New variables, which are listed
in Table 1, were introduced to define these groups. Applying
multivariate statistical analysis will make it clear whether these
variables are really important in describing the data.

Principal component analysis (PCA) is a multivariate statis-
tical tool that is used to describe a data sample as a function
of a group of random variables [3]. The main aim of PCA is to
select the variables that have the most influence on the variance
of the sample. In fact, this technique allows us to describe the
dependence of a variable on the other variables.

In the present case PCA was carried out on a system of 13
variables (see Table 1):

- the NI/NK ratio
- NK
- Location
- three accident types
- seven possible origins
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Table 1
Variables used in the PCA analysis.

Variable Description Type

NI Number of injured people Discrete (minimum = 0;
maximum = 2500)

NK Number of deaths Discrete (minimum = 1;
maximum = 501)

NI/NK Injured to killed ratio Rational (minimum = 0;
maximum = 601.0)

Location Location (1, EU 15; 2, rest of
the first worlda; 3, rest of the
world)

Discrete

Accident type
Explosion Presence of an explosion Logical (yes = 1; no = 0)
Fire Presence of a fire
GasCloud Presence of a gas cloud

Origin of accident
DomCom Incident originated in domestic

or commercial premises
Process Incident originated in a process

plant
Storage Incident originated in a storage

plant
Transfer Incident originated during

loading or unloading
Transport Incident originated during

transport of the material
external to the plant, including
pipelines

Warehouse Incident originated in a
warehouse

Waste Waste storage or disposal areas,
including settling ponds,
material dumps, bulk waste
files, but excluding materials
being used in plant production

a Includes accidents occurred in Australia, Canada, Hong Kong, Iceland,
Japan, Malta, New Zealand, Norway, Switzerland and the USA.

conclusion can be drawn that the data are not describable in
an unambiguous way by any combination of variables. In other
words, none of the variables or combinations of variables are
decisive in defining the relationship between NI and NK.

Fig. 2. Principal component analysis loading plot of the 13 variables.
he results of the PCA for the first two principal components
re shown in Figs. 2 and 3. Fig. 2 is a loading plot, i.e. a repre-
entation of the variables in the form of vectors (eigenvectors of
correlation matrix). An ideal loading plot should be drawn in
space with n dimensions, where n is the number of variables.
ach dimension represents a principal component of the data,

hat is, a “direction” along which data are distributed, in such a
ay that the first principal component has the largest covariance,

he second principal component has the second largest covari-
nce, etc. In the present case, it is impossible to represent a plot
ike this, so only the first two principal components are repre-
ented. Unfortunately, these two components do not describe a
arge part of the data variance. Six components are needed to
ccount for 60% of the variance, while the first two components
nly describe 24%. On a very general level, the quite obvious
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Fig. 3. Score representation for the PCA analysis.

In spite of this, some important conclusions can be inferred
from the analysis. Fig. 2 makes it clear that

- The three variables describing the accident type are very
important as descriptors of the variance of the system and
correlate very well with NI/NK. It is apparent that gas cloud
accidents tend to have a higher ratio of injured people to
fatalities, while fire and especially explosion events show a
tendency towards smaller than average ratios. The score plots
in Fig. 3 confirm this. A score plot represents the data sam-
ple in the n-dimension space defined by the PCA. Score plots
can be useful for supporting inferences derived from a load-
ing plot. In Fig. 3, the gas cloud data subset is displaced in
the direction of the NI/NK eigenvector, fire is centred around
the origin of the axes, while explosion shifts slightly in the
opposite direction to NI/NK. For clarity’s sake, the accidents
for which both an explosion and a fire were reported are not
shown on the graph; otherwise, a more explicit displacement
in the opposite direction to NI/NK would be seen. This means
that if an accident involves a gas cloud, the ratio of injured
people to fatalities is higher than in fire accidents, while, on
average, explosion accidents show a tendency towards lower
ratios.

- Location has little influence on NI/NK. There is a slight ten-
dency for accidents that happen in developing countries to

- Of the variables related to the origin of an accident, only Trans-
port and Process significantly influence the variance of the
system. Waste, Storage, DomCom and Warehouse play a sec-
ondary role, while Transfer has very little or no importance.

- As their eigenvectors are practically perpendicular to that of
NI/NK, Process and Transport are very weakly related to the
ratio of injured people to fatalities, despite their large statistical
weight.

4. Clustering

PCA was complemented with a clustering analysis of the
sample in order to better identify the sets of accidents that could
undergo selective, specific statistical treatment. The analysis was
performed using the Knowledge SEEKER (KS) Software. Clus-
tering consists in designing a classification tree based on one
variable by grouping data according to the values of the other
variables. In the present case, data were evaluated based on the
NI/NK ratio and classified in structured subgroups defined by
other variables associated with the incidents.

The technique used to design a classification tree is a refine-
ment of the CHAID algorithm proposed by Kass [5] for deter-
mining the best multiway partitions of data based on a signifi-
cance test. The algorithm recursively splits each subset or node
into k new nodes, starting with all the observations at the initial
n
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have a higher ratio of injured people to fatalities. Location
does, however, have a clear effect on the number of fatalities
(NK), as can be seen in Fig. 2 (the vectors corresponding to
Location and NK have the same direction and similar length).
This pattern is confirmed by literature [4].
ode. The process continues until no more significant splits can
e found. This method finds groups that maximise similarity
ithin the groups and dissimilarity between the groups [5–7].
At each node, all predictor variables are considered in turn as

andidates for splitting the node. The best split of each variable
s found and the significance of that split is used to rank vari-
bles according to how well they split the node. For categorical
ssociations the F statistic is used.

In order to perform data clustering, the sample was modified
lightly to avoid possible ambiguities. Clustering works better
hen the variables mutually exclude each other. Therefore,

Ninety accidents were not considered, because they are not
classified under any accident type. These accidents are mostly
events that MHIDAS describes as some kind of “release” of
a hazardous material. This category is quite confusing, as a
release or loss of containment in itself cannot harm people
unless a toxic cloud is formed, the material ignites or an explo-
sion is produced.
As mentioned above, MHIDAS can assign an accident to more
than one accident type. To avoid confusion, each accident was
reassigned to a single accident type according to the following
criterion: If Explosion = 1, then the accident was considered as
an explosion, even if it was also a fire and/or a gas cloud. The
remaining accidents were considered to be fires if Fire = 1,
despite their possible additional status as gas clouds. Other-
wise, the accidents were considered to be gas clouds.2 In other

2 This prioritisation (explosion > fire > gas cloud) is due to the average scale of
everity of the accidents: explosions are generally more severe than fires, which
n turn are more severe than gas clouds [4].
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Fig. 4. Results of the clustering analysis.

words, only one variable was used to describe the accident type
(instead of three, as in the PCA). The possible values of this
variable are Explosion, Fire and GasCloud.

- Twelve more records were excluded to which MHIDAS does
not assign any definite accident origin. The Origin of the acci-
dent (which is not affected by the ambiguity in the accident
type) is then taken as an independent variable, whose possible
values are DomCom, Process, Storage, Transfer, Transport,
Warehouse and Waste.

Thus, 873 accidents were retained for clustering. The NI/NK ratio
was used as a dependent variable, while Origin, Accident Type
and Location were considered as independent. Fig. 4 shows the
results of the analysis. The most significant variable is Accident
Type. This is evidence that the pattern revealed by the PCA is
significant. Moreover, by looking at the average NI/NK for each
group it can be seen that the ratio is lower for fires and higher
for gas clouds.

The other variables are of minor importance and only con-
tribute to a slightly more detailed definition of the three major
subgroups. In the case of the Explosion subset (681 cases, with
an average value of NI/NK = 6.0), the Origin variable proved to
be relevant. In addition, three more accident subsets were out-
lined: (a) Transport, DomCom and Waste, with an average value
of NI/NK = 3.8, (b) Process and Transfer, with an average value
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on average, while for category 3 (a very limited sample) the
mean NI/NK is 76. This is further proof that accidents occurring
in developing countries are, on average, more severe than in
industrialised countries.

5. A simple statistical treatment of NI versus NK

The first conclusion that can be drawn from the multivariate
analysis is that there is no reason to correlate the data with a
generalised linear model or other regressions, since not only does
NI correlate with NK very weakly (see Fig. 1), but it correlates
with the other variables even less. Attempts to define a linear
model based on 10–12 variables give discouraging results: R2 is
never more than 0.4, this value is achieved with two independent
variables (NK and GasCloud) and does not improve when more
variables are introduced.

A simple statistical analysis aimed at revealing major patterns
in the relationship between NI and NK was carried out using the
datasets for which the multivariate analysis had indicated that
a significant correlation existed, i.e. the three major data sub-
groups defined according to accident type and the whole sample
overall. Given that NK is very dispersed, data were analysed by
dividing the number of people killed into certain ranges. For
each range the number of people injured was represented by
several statistical parameters, such as mean, standard deviation,
m
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f NI/NK = 5.7 and (c) Storage and Warehouse, with an average
alue of NI/NK = 11.

In the Fire sample (149 accidents), which had an average
alue of NI/NK = 3.6, no further specific sets were identified.

Finally, the gas cloud subset, which had a rather reduced
umber of accidents (43), gave the highest values for the ratio of
njured people to fatalities: NI/NK = 31 on average. However, this
gure is significantly influenced by the data corresponding to the
ccidents that occurred in developing countries (Location = 3),
s can be seen in the classification tree. It was possible to obtain
wo nodes as a function of the level of development of the country
here the accident happened. Thus, for the subset corresponding

o categories 1 (EU 15) and 2 (rest of the first world), NI/NK = 12
edian and percentiles. The intervals were selected so that they
ontained at least 2% of the total number of records. As can be
een in Fig. 1, there are a greater number of records correspond-
ng to accidents with a small number of people killed. In fact,
he first nine groups have a width of just one point. For the rest
f the ranges, the average number of people killed was evaluated
ased on a weighted average:

¯ K,r =
∑nr,max

i=nr,min
niNK,i

∑nr,max
i=nr,min

ni

(1)

here ni is the number of records with NK = NK,i and nr,min and
r,max are the left and right limits of the r range.
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Fig. 5. Percentiles of the distribution and average, as calculated based on NK

ranges.

Fig. 5 shows the 25%, 50% (median), 75% and 97.5% per-
centiles and the average of the NI distributions for each NK range
and for all the data. The abscissae of each point in the graph are
the weighted averages of the corresponding range (according to
Eq. (1)). The lines resulting from the linear regression of each
percentile are also shown.

Percentiles give an idea of the probability of a certain number
of people being injured in relation to the number of fatalities in
an accident. In general, percentiles are a good tool for describing
data distributions that are unresponsive to regressions. Firstly,
percentiles give evidence of the variance of the data. This param-
eter grows exponentially with the number of people killed. In
fact, the lines resulting from the percentile regression are prac-
tically parallel to one another in a log–log scale. Moreover, this
shows that the shape of the distribution in each range is similar:
distributions are asymmetric, their median is nearer to the mini-
mum and they are dispersed widely for high numbers of injured
people.

The 50% and 75% percentiles fit into straight lines very well,
while obviously the peripheral 25% and 97.5% percentiles are
more irregularly scattered. By observing the 97.5% percentile,
it can be inferred that, in an industrial accident with less than 25
deaths, it is highly unlikely that the number of injured people
will exceed 150.

Due to the aforementioned asymmetry of the distribution, the
mean values for each range correspond almost perfectly with
t
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Fig. 6. Fitting regressions for NI vs. NK in the case of gas cloud, fire and explo-
sion accidents.

as indicative):

Gas clouds NI = 34N0.54
K , for 1 < NK < 30 (2)

Fires NI = 3N0.86
K , for 1 < NK < 100 (3)

Explosions NI = 7N0.76
K , for 1 < NK < 200 (4)

All accidents NI = 6N0.77
K , for 1 < NK < 200 (5)

An interesting feature is that, in spite of having the highest NI/NK
ratio (Fig. 6), gas cloud accidents show a tendency for this ratio
to progressively decrease.

6. Conclusions

In QRA, estimating the number of injured people requires
a significant amount of additional work. Furthermore, a stan-
dard QRA approach with probit estimations often entails rough
approximations, as the real figures depend on boundary condi-
tions that are sometimes unpredictable. Therefore, in the same
way that approximate QRA values are applied when exact infor-
mation is lacking, an approximate criterion for evaluating NI
as a function of NK would be very useful. This criterion was
identified based on a historical analysis, i.e. by analyzing the
“experimental data” that are available.

The sample used in this survey follows a trend of NI increas-
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hose of the 75% percentile. There is only one exception: the
8 < NK < 50 range, for which the average number of injuries
s unusually high. This is attributable to the Toulouse acci-
ent of September 2001, which has a very high NI/NK ratio
MHIDAS reports 2500 people injured and 30 killed in this
ccident).

In Fig. 6 mean values for NI are plotted for each NK range
nd for the three accident types. The corresponding linear regres-
ions are also shown. As mentioned before, the accidents that
nvolve gas clouds result in the greatest number of people
njured, followed by explosion and fire accidents, respectively.
he fitting lines for the three subsets and the whole dataset,
ave the following form (validity intervals must be considered
ng with NK. However, due to the degree of data dispersion,
conventional statistical correlation approach would be use-

ess and certainly unreliable. This is why more sophisticated
ethods were applied to identify the data subsets that can be

orrelated fairly accurately. We applied two multivariate analy-
is techniques: principal component analysis and clustering.

These procedures have shown that the variables describing
he accident type have the most influence on the ratio of injured
eople to fatalities. As for the rest of the variables, the geo-
raphical location is not significant for NI/NK (even if it has a
lear influence on the number of fatalities, as accidents occur-
ing in developing countries are more severe). Both the principal
omponent analysis and clustering reveal a pattern according to
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which the highest values of NI/NK pertain to gas cloud accidents,
followed by fires and then explosions.

This is confirmed by plotting the mean NI data against proper
ranges of NK for the three different accident types.

A simple correlation (Eq. (5)) that is independent of acci-
dent type and estimates the mean number of injured people was
obtained. Due to the particular form of the data distribution, this
equation returns NI values which are not expected to be exceeded
(with a probability of 75%). The same was done for the three
subsets associated with accident types, which resulted in the
corresponding regressions (Eqs. (2)–(4) for gas cloud, explo-
sion and fire accidents). Since in this case there are significantly
less data, these three equations were obtained by correlating the
means of data ranges, instead of the 75% percentile.

These equations can be helpful in the case of fatal accidents
involving hazardous materials. By giving an idea of the number
of people that are expected to be hospitalised, hospital facili-
ties and the response to the emergency in general can be better
managed. Moreover, using these criteria a priori is a way of

saving time in estimating the number of injured people without
resorting to effects calculations and probit techniques.
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